Towards a Compositional Approach to the
Design and Verification of Distributed Systems

*

Michel Charpentier and K. Mani Chandy

California Institute of Technology
Computer Science Department
m/s 256-80, Pasadena, CA 91125
e-mail: {charpov,mani}@cs.caltech.edu

Technical Report: CS-TR-99-02

Abstract. We are investigating a component-based approach for formal
design of distributed systems. In this paper, we introduce the framework
we use for specification, composition and communication and we apply
it to an example that highlights the different aspects of a compositional
design, including top-down and bottom-up phases, proofs of composition,
refinement proofs, proofs of program texts, and component reuse.

Key-words: component-based design, distributed systems, formal spec-
ification, formal verification, temporal logic, UNITY.

1 A Compositional Approach

1.1 Introduction

Component technology is becoming increasingly popular. Microsoft’s COM, Java-
Soft’s beans, CORBA, and new trade magazines devoted to component technol-
ogy attest to the growing importance of this area. Component-based software
development is having an impact in the development of user interfaces. Such
systems often have multiple threads (loci of control) executing in different com-
ponents that are synchronized with each other.

These systems are examples of reactive systems in which components inter-
act with their environments. Component technology has advantages for reactive
systems, but it also poses important challenges including the following.

— How do we specify components? Specifications must deal with both progress
and safety, and they must capture the relationship between each component
and its environment. What technologies will support large repositories of
software components, possibly even world-wide webs of components, such
that component implementations can be discovered given component speci-
fications?

* This work is supported by a grant from the Air Force Office of Scientific Research.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1999 2. REPORT TYPE 00-00-1999 to 00-00-1999
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Towardsa Compositional Approach to the Design and Verification of
Distributed Systems

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 29
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

— Electronic circuit design is an often cited metaphor for building software
systems using component technologies. Phrases such as plug and play, and
wiring components together, are used in software design. These approaches
to software design will work only if there are systematic methods of proving
specifications of composed systems from specifications of components.
Further, we would like to propose methods in which the proof obligations
for the designer who puts components together is made easier at the ex-
pense of the component designer. The idea is that component designers add
component specifications, implementations, and proofs into a repository. An
implementation of a component may, in turn, be a composition of other com-
ponents. We want the composer’s work to become easier by exploiting the
effort in specification, implementation and proof that is invested in building
the component repository.

— Mechanical proof checkers and theorem provers can play an important role
in building high-confidence repositories of software components, though the
widespread use of these technologies may be decades away. The challenge
is to develop theories of composition that can be supported by mechanical
provers.

1.2 Proposition

The basis for our framework is the UNITY formalism which provides a way to
describe fair transition systems and which uses a small set of temporal logic
operators which appear well suited for many applications. It is extended with a
theory of composition which relies on two intuitive forms of interaction: ezisten-
tial (a system property holds if it holds in at least one component) and universal
(a system property holds if it holds in all components). We also add a new tempo-
ral operator (follows) which allows us to represent asynchronous point-to-point
communication at a logical level, while using only monotonic distributed (i.e.
writable by one component only) variables.

These choices restrict the expressive power of the framework: we do not deal
with any temporal specification, any form of composition, any type of commu-
nication. This is a way in which we obtain something manageable. However, we
need to know if such a framework can be applied to a wide class of problems
and if it leads to simple and intuitive proofs. These two points can be explored
by using the framework to design several distributed systems.

Through the example described in this paper, we show that this framework
can be used to specify generic and specific components, to describe communica-
tion between them, to handle refinement proofs (classical UNITY proofs) related
to top-down steps, program text correctness proofs (“almost” classical UNITY
proofs) and compositional proofs related to bottom-up steps.

The remainder of the paper is organized as follows. In the next section, we
formally define the different aspects of the framework we are using. The following
section presents the architecture of a resource allocation example and introduces
the required formal steps we have to complete in order to achieve the design.

The next sections are each devoted to a part of this design, namely the high-
level decomposition, the clients design, the decomposition of the allocator into
a simpler allocator and finally the design of this simpler allocator. One proof
of each kind (refinement, composition and program text correctness) is given in
the paper. All other proofs are detailed in appendixes.

2 Framework

The framework we use is based on a UNITY-like logic and programming nota-
tion [1, 6]. The traditional UNITY form of composition (union) is used. However,
at the logical level, we use the notions of ezistential and universal properties.
Especially, a guarantees operator, that provides existential specifications, is in-
troduced [2, 3]. We further extend UNITY with an abstraction of communication,
based on temporal operators described in [4,9].

2.1 Basis

A program (describing a component behavior) consists of a set of typed variables,
an initially predicate, which is a predicate on program states, a finite set of
atomic commands C, and a subset D of C of commands subjected to a weak
fairness constraint: every command in D must be executed infinitely often. The
set C' contains at least the command skip which leaves the state unchanged.

Program composition is defined to be the union of the sets of variables and the
sets C' and D of the components, and the conjunction of the initially predicates.
Such a composition is not always possible. Especially, composition must respect
variable locality and must provide at least one initial state (the conjunction of
initial predicates must be logically consistent). We use F' * G to denote that
programs F and G can be composed. Then, the system resulting from that
composition is denoted by F|G.

To specify programs and to reason about their correctness, we use UNITY
logical operators as defined in [6]. However, when dealing with composition, one
must be careful wether to use the strong or the weak form of these operators.
The strong (sometimes called inductive) form is the one obtained from the wp
quantification without using the substitution axiom [1, 6]. The weak form is either
the one obtained when using the substitution axiom or the one defined from the
strongest invariant (which are equivalent) [6,8]. Strong operators are subscript
with s and weak operators are subscript with w. No subscript means that either
form can be used. The strong form of an operator is logically stronger than the
weak form. Note that transient has no weak form and leads-to has no strong
form, and that always is the weak form of invariant (which is strong). These
operators are defined as follows, for any state predicates p and ¢q (SI denotes the
strongest invariant of the program):

init p [initially = p]

> >

transient p (3c:c€ D:p= wp.c.—p)

p nexty q 2 (Vec:c€ D:p= wp.cq)
stableg p = p nextg p

invariant p = (init p) A (stables p)
p nexty, ¢ 2 (SIA p) next; q
stabley p = pnexty p

always p < [SI= p]

The leads-to operator, denoted by > , is the strongest solution of:

Transient : [transient q = true— —q]
Implication : [p=¢q] = [p— q]
Disjunction : For any set of predicates S:
[(Vp:peS:p—q) = (Fp:peS:p)—q]
Transitivity : [p—> qAqg— T = p— 1]
PSP :[p— gAsnextyt = (pAs) = (gAS)V(msAt)]

X - F means that property X holds in program F'. Traditionally, monotonicity
is expressed with a set of stable properties. In order to avoid the repetition of
this set of stable properties, we define the shortcut:

x ¢ -F E (Vk :: stabley k < z - F)

which means that z never decreases in F' in isolation (the weak form of stable is
used and nothing is said about x when F' is composed with other components).
When there is no ambiguity, we omit the order relation and simply write x .

Since we are dealing with distributed systems, we assume no variable can
be written by more than one component!. We consider three kinds of variables:
input ports, output ports and local variables. Input ports can only be read by the
component; output ports and local variables can be written by the component
and by no other component.

The fact that an output port or a local variable cannot be written by an-
other component is referred to as the locality principle. Formally, if variable v
is writable by component F' and env is a possible environment of F' (F x env),
then:

VEk :: stablesv =k - env

i.e., v is left unchanged by F”’s environment.

2.2 Composition

We use a compositional approach introduced in [2, 3], based on ezistential and
universal characteristics. A property is existential when it holds in any system
in which at least one component has the property. A property is universal when

! Strictly speaking, a component local variable may be read by another component,
but we do not use that possibility.

it holds in any system in which all components have the property. Of course, any
existential property is also universal. We use the formal definition of [5] which
is slightly different from the original definition in [3]:

(VEF,G:F+«G:X-FVX -G= X-F|G)
(VE,G:F+«G:X-FAX -G= X-F|G)

X is existential =
A

X is universal

Another element of the theory is the guarantees operator, from pairs of properties
to properties. Given program properties X and Y, the property X guarantees Y
is defined by:

X guarantees Y - F = (VG : F+G: (X - F|G) = (Y - F|G))

Properties of type init, transient and guarantees are existential and properties
of type nexts, stable; and invariant are universal. All other types are neither
existential nor universal, but can appear on the right-hand side of a guarantees
to provide an existential property.

2.3 Communication

All the communication involved in a system is described with input and out-
put ports. Formally, an input (resp. output) port is the history of all messages
received (resp. sent) through this port. Note that ports are monotonic with re-
spect to the prefix relation. We need to introduce a temporal operator to describe
communication delays between these ports, as well as some notations to handle
easily finite sequences of messages.

Follows. To represent the unbounded nondeterministic delay introduced by
some components (including the underlying network), we use a follows temporal
operator inspired form [4,9].

Definition 1 (). For any pair of state expressions (in particular variables)
x and ‘x, and an order relation <, we define ‘x © x (“‘x follows x”) with respect
to <

wBx = (2 M)A (x /) A (always ‘e <) A (Ve k<z k<)

Intuitively, ‘x € z means that = and ‘z are monotonic and ‘z is always trailing
z (wrt the order <), but that some liveness always works at reducing the gap.

Then, follows can be used in conjunction with functions on histories to de-
scribe different kinds of transformational components. Deterministic components
are described with specifications of the form “Out @ f.In”, while nondetermin-
istic components use the “f.Qut & In” form. In particular, network components
(wires) are specified by “Out & In.”

The following properties are referred to as “follows theorems”:

‘e x A f monotonic = f. 'z f.x
“cBe ANzl x = “olx
‘cBrAyBy = ‘zU‘yBxUy (for sets or bags)

Notations on Histories.

Definition 2 (/). Given a (finite) sequence Seq and a set S, Seq/S represents
the subsequence of Seq for indexes in S:

A

|Seq/S| = card([1..|Seq|]NS) and
(Vk:1< k< |Seq/S|: (Seq/S)[k] = Seq[(minn : card(S N[1..n]) >k : n)))

|Seg| denotes the length of sequence Seq. Note that we do not force values in

S to be valid indexes of Seq. Actually, the condition under which k& is a valid
index of Seq/Sis 1 < k < |Seq| A k€ S.

Definition 3 (Cr). Given a binary relation R, we define the corresponding
weak prefix relationship, denoted by Cr:

QCr Q' = QISIQIA(VE:1<k<|Q|: QK] R Q'K])

Note that C_ is the traditional prefix relationship. In the paper, we are only
using C¢ and C3 on sequences of integers.

Definition 4 ().
Given S and S' in 2N :

S<S 2 SCSANz:zeS Az ¢S:(Vy:yeS:y<a))

S < S’ strengthens the subset relation S C S’ by forcing the additional values
in S’ to be greater than all values in S. An alternative definition could be:

S<S = (VQ:=Q/STQ/S"
Definition 5 (B). We denote by B(Q) the bag of the values in sequence Q.

Note that function B is monotonic.

3 The Resource Allocation Example

3.1 The Different Steps of the Design

We suppose we want to design a resource allocation system: we want some clients
to handle correctly some shared resources.

In a first step, we specify formally what the clients are doing with respect
to these resources (spec. [3]) and what the correctness constraints of the sys-
tem are (spec. [2]). We deduce, in a systematical way, how a resource allocator
should behave to provide that correctness (spec. [4]). We then pick some generic
network specification (spec. [5]) and make a compositional proof to show that
if all components satisfy their specifications, the system global correctness is
guaranteed (proof C1 sect. 4.2).

Now, we have to design a resource allocator satisfying the previous spec-
ification. We come with the idea that such an allocator can be built from a
simpler single-client allocator and some generic components (possibly found in
a component library). So, we specify how the single-client allocator should be-
have (spec. [10]), pick a generic merge component (spec. [6]), a generic distrib-
utor component (spec. [7]) and connect all these components with a network
(spec. [8]). We obtain an allocator that enjoys additional properties, compared
to the allocator we need for our system. Since such properties may be reused
later in another design, we specify formally this resulting allocator (spec. [9])
and prove that it is actually obtained from the chosen components (proof C2
sect. B.2). We also prove that this allocator implements the allocator we needed
(proof R1 sect. 5.3).

To complete the development, we have to design a client program and a
single-client allocator program. Starting from the specifications we obtained ([3]
and [10]), we write two programs we hope to satisfy the given specifications. We
observe that the resulting programs (prog. sect. 6.1 and prog. sect. 7.1) have
more properties than requested. Again, since such properties can be reused, we
express formally these behaviors (spec. [11] and spec. [12]), prove that the texts
satisfy these specifications (proofs T1 sect. 6.3 and T2 sect. D.3) and, of course,
that these specifications are stronger than requested (proofs R2 sect. C.2 and
R3 sect. C.3).

The different steps of this design are summarized in fig. 1.

3.2 Notations

Resources are described with anonymous tokens. All the messages exchanged
between the resource allocator and its clients have the same type: integer (the
number of tokens requested, given or released). Tokens.h is the total number of
tokens in history h (i.e. Tokens.h = Zlk’il hlk]).

All clients have the same generic behavior. They send requests for resources
through a port ask, receive these resources through a port giv, and release the
resources through a port rel. Clients variables are prefixed with Client;. The
allocator has three arrays of ports, ask, giv and rel, prefixed by Alloc. A network
is responsible for transporting messages from Client;.ask to Alloc.ask;, from
Alloc.giv; to Client;.giv, and from Client;.rel to Alloc.rel;. A valid initial state
is a state where all ports histories are empty and where the resource allocator
has a stock of NbT tokens.

4 From a Resource Allocation System towards an
Allocator and Clients

4.1 Components Specifications

The global correctness we want for the resource allocation system is expressed
in a very traditional way. A safety property states that clients never share more

Allocator
(required)

Resource Allocation System

Client
(required)

Allocator M Client
(provided) erge (provided)
Network

Single allocator Distrib
(required) istributor
Single allocator
(provided) P
Specification Compositional proof

Single allocator

Specification

from library

Program text

Refinement pr oof

Program text
correctness proof

Fig. 1. General design.

tokens that there exists in the system. A liveness property guarantees that all
client requests are eventually satisfied (Fig. 2).

always) .(Tokens.Client;.giv — Tokens.Client;.rel) < NbT (1)
Vi, h :: h C Client;.ask — h Cg Client;.giv (2)

Fig. 2. Resource allocation system specification.

Clients specification is also very intuitive. The safety part is that clients never
ask for more tokens that there exist (such requests would not be satisfiable).
The liveness part guarantees that clients return all the tokens they get, when
these tokens are satisfying a request (unrequested tokens or tokens in insufficient
number may not be returned) (Fig. 3).

true guarantees ask ~ A rel /* (3)
true guarantees always (Vk :: ask[k] < NbT) (4)
giv /* guarantees Vh :: h C giv A h C5 ask — Tokens.rel > Tokens.h (5)

Fig. 3. Client specification (required).

The allocator specification is almost derived from the client specification.
In particular, there is a strong correspondence between the right-hand sides of
clients guarantees and the left-hand side of the allocator guarantees. The global
safety, which is the responsibility (mostly) of the allocator appears also in the
specification (Fig. 4).

true guarantees Vi :: giv, /* (6)
(Vi :: rel; /*) guarantees always Y. ,(Tokens.giv; — Tokens.rel;) < NbT (7)
Vi ask; S A rel; S

A always (Vi,k :: aski[k] < NbT)
A Vi, h i h; E giv, A hi T3 ask; — Tokens.rel; > Tokens.h; (8)
guarantees

Vi,h:: h C ask; — h Cg¢ giv;

Fig. 4. Allocator specification (required).

The network specification relies on the follows operator. Output ports are
connected to corresponding input ports with & which provides both safety and
liveness (Fig. 5).

Vi i
Client;.ask /* guarantees Alloc.ask; B Client;.ask)
Alloc.giv, /* guarantees Client;.giv & Alloc.giv;
Client;.rel /* guarantees Alloc.rel; B Client;.rel

Fig. 5. Network specification.

4.2 Composition Proof
Property (1).
Proof. In resource allocation system:

{Specification (3)}

Vi :: Client;.rel /*
= {Specification (9), follows definition}

Vi :: Alloc.rel; S
= {Specification (7)}

always) .(Tokens.Alloc.giv; — Tokens.Alloc.rel;) < NbT
= {Specifications (6), (3) and (9), follows theorems}

always y .(Tokens.Client;.giv — Tokens.Client;.rel) < NbT

Property (2).

Proof. In resource allocation system:

{Specification (3)}
Vi :: Client;.ask /* A Client;.rel /*
= {Specification (9), follows definition}
Vi :: Alloc.ask; /& N Alloc.rel;
= {Specification (4)}
Vi :: Alloc.ask; /& N Alloc.rel; /
A Vi :: always (Vk :: Client;.ask[k] < NbT)
= {Specification (9), follows definition, calculus}
Vi :: Alloc.ask; /* N Alloc.rel; S
A always (Vi, k :: Alloc.ask;[k] < NbT)
= {Specification (6)}
Vi :: Alloc.ask; /0 N Alloc.rel; S
A always (Vi, k :: Alloc.ask;[k] < NbT)
A Vi Alloc.giv; /
= {Specification (9), follows definition}

10

Vi :: Alloc.ask; /* N Alloc.rel; S
A always (Vi, k :: Alloc.ask;[k] < NbT)
A Vi = Client;.giv S
= {Specification (5)}
Vi :: Alloc.ask; /& N Alloc.rel; &
A always (Vi, k :: Alloc.ask;[k] < NbT)
AN, b hy € Client;.giv A hy E5 Client;.ask — Tokens.Client;.rel > Tokens.h;
= {Specification (9), follows definition, transitivity of — }
Vi :: Alloc.ask; /N Alloc.rel;
A always (Vi, k :: Alloc.ask;[k] < NbT)
A Vi, h: h;y € Alloc.giv; A hy T3 Alloc.ask; — Tokens.Alloc.rel; > Tokens.h;
= {Specification (8)}
Vi, h :: h € Alloc.ask; — h T Alloc.giv;
= {Specification (9), follows definition}
Vi, h 2 h € Client;.ask — h T Client;.giv

5 From a Single-Client Allocator to a General Allocator

5.1 Components Specifications

The first component we use is a fair merge. It merges N input channels (In) into
one output channel (Out). Furthermore, it provides, for each output message,
the number of the channel where it comes from (iOut) (Fig. 6). This merge
component is assumed to be fair: No input channel can be ignored indefinitely.
A merge component is nondeterministic.

Ino
Iﬂ,1
Merge Out
iOut
Inn
true guarantees Out * A iQut (10)
true guarantees always |Out| = |iOut| (11)
true guarantees always (Vk :: 0 < i0ut[k] < N) (12)
Vi Ing S
guarantees (13)
Vi Out/{k | 1 < k < |iOut| A iOutlk] =i} B In;
Fig. 6. Merge specification.

11

The main merge specification is (13). But since this specification only con-
straints values when indexes are present (and indexes when values are present),
we force that there is no value without the corresponding index, and no index
without the corresponding value (11). Moreover, specification (13) does not con-
straint values corresponding to nonvalid indexes. So, we force that there is never
a nonvalid index (12). Finally, these specifications force the output to be mono-
tonic in length only (some value may still be replaced by another, changing the
corresponding index at the same time). Therefore, we add the constraint (10).
We obtain the specification in fig. 6.

The distributor component is the symmetric of the merge: Given a valid index
in iIn and a value in In, it outputs the value in the right output queue Out;
(Fig. 7). A distributor component is assumed to be fair: If indexes are present,
the input channel cannot be ignored indefinitely. A distributor component is
deterministic.

—» Outg

—» Out1
In Distributor
iIn

— Outn_1

In /* ANiln /A always (Vk : 0 < iln[k] < N)
guarantees (14)
Vi Out; © In/{k | 1 < k < |iln| A iIn[k] = i}

Fig. 7. Distributor specification.

The distributor main specification is similar to the corresponding merge spec-
ification (Fig. 7). One important difference is the left-hand side of the guarantees:
We have to assume that the indexes provided in iIn are correct. The difficulties
we had with the merge, leading us to add several specifications, do not appear
here. In particular, the monotonicity of outputs is a theorem (22).

We now combine these merge and distributor components with a simple
allocator that only deals with a unique client. The requests are merged towards
this simple allocator. Their origins are transfered directly to a distributor which
is responsible for sending the tokens given by the allocator to the right addresses.
Releases are also merged towards the simple allocator. Their origins are not used.
All four components are connected via a network described with follows relations
(Fig. 8).

The allocator we build from this composition provides a specification stronger
than the required specification [4]. The difference is that the origin of releases
is completely ignored. Therefore, the resulting allocator only cares about the
total number of tokens coming back. This allows clients to exchange tokens and

12

relo
rely
R
relN-1 R 3 rel A -~
] 1 v 2 "
| gvd G G
————)
asko A 3 ask C >
ask1
A iA 3iG
ask N1

Fig. 8. General allocator architecture and network specification.

a client can return tokens received by another client. This leads to a weaker
assumption in the left-hand side of the liveness property (Fig. 9).

true guarantees Vi :: giv, (15)
(Vi :: rel; /') guarantees always Y .(Tokens.giv; — Tokens.rel;) < NbT (16)
Vi:: ask; S Nrely S

A always (Vi,k :: aski[k] < NbT)
AVh:: (Vi hi C giv; A h; Ty aski) — >, Tokens.rel; > Y, Tokens.h; (17)
guarantees

Vi, h :: h C ask; — h Cg giv,;

Fig. 9. Allocator specification (provided).

The previous construction relies on a single-client allocator. Its specification
is derived from specification [9] for N =1 (Fig. 10).

5.2 Basic Properties

In this section, we state some basic properties satisfied by the merge and distrib-
utor components. We can either consider them as lemmas in the compositional
proof, or as additional specifications provided, for instance, by a previous use of
these components (see conclusions).

Merge Component. The following formula states that the output (in terms of
bags) follows the input of a merge. In other words, there are always less messages

13

)

g1,y

W1

true guarantees giv (18)

rel /0 guarantees always Tokens.giv — Tokens.rel < NbT (19)
ask S Nrel S
A always (Vk :: ask[k] < NbT)
AVh:: hE giv AhCy ask — Tokens.rel > Tokens.h (20)
guarantees

Vh: h C ask — h Cg giv

Fig. 10. Single-client allocator specification (required).

on the right of a merge than on the left, but some liveness works at reducing
that difference.

(Vi :: In; /') guarantees B(Out) & UB(In,-) (21)

Proof. See appendix A.1 O

Distributor Component. This property states the monotonicity of outputs:

In & ANiln /& A always (Vk :: 0 < iln[k] < N)
guarantees (22)
Vi :: Out; N
Proof. See appendix A.2 O

The following property corresponds to property (21) for the merge:

In & Niln /0 A always (Vk :: 0 < iln[k] < N)
guarantees (23)

U; B(Out;) © B(In/{k | 1 < k < |iln]})

Proof. See appendix A.2 |

5.3 Refinement Proof

We need to show that the provided specification [9] is stronger that the required
specification [4]. The only proof obligation is that (17) = (8). Since the right-
hand sides are the same, we have to prove that the left-hand side of (8) is stronger
that the left-hand-side of (17).

14

Proof.

{lhs of (8)}
Vi, h:: h; € giv; A hy E5 ask; — Tokens.rel; > Tokens.h;
= {rel; 7, Tokens.rel; /', PSP}
Vh (Vi h; C giv; A hi T3 ask;) — (Vi Tokens.rel; > Tokens.h;)
= {calculus}
Vh (Vi h; C giv; A h; T ask;) —), Tokens.rel; > 5, Tokens.h;
{lhs of (17)}

The composition proof is given in appendix B.2

6 Clients

6.1 Model

A client handles a variable T" which is randomly chosen between 1 and NbT
and which represents the size of the next request. Requests for tokens are built
by appending the value of T to the history of requests. There is exactly one
rel message produced for each giv message received that satisfies the condition
(enough tokens to serve the request). Such a client can send several requests
before one request is answered, and can receive several answers before it releases
one.

Program Client
Declare
g @ input history;
ask, rel : output history;
T : bag of colors;
Initially
1< T < NbT;
Assign (weak fairness)
rel := rel o giv[|rel| +1] if |rel| < |giv| A giv[|rel| + 1] > ask[|rel| + 1]
Assign (no fairness)
| T :== (T mod NbT) +1
| ask := aske T
End

6.2 Provided Specification

The client model provides a different (and stronger) liveness than requested. It
is only requested that clients return the right total number of tokens. However,
this client always return all the tokens corresponding to a request in a single
message (Fig. 11).

The refinement proof ([11] = [3]) is given in appendix C.2

15

true guarantees ask ~ A rel S
true guarantees always (Vk :: ask[k] < NbT)
giv /' guarantees Vh :: h C giv Ah Ty ask — h C el

Fig. 11. Client specification (provided).

(24)
(25)
(26)

6.3 Correctness Proof

Property (24). Inductive and local.

Property (25). The program satisfies the following inductive invariant:

invariant (V& :: ask[k] < NbT) A (T < NbT)

which is local and stronger than the required always property.

Property (26).

Lemma 27.
Vh,k :: transient rel =k Ak T hAhC giv AhCs ask - Client

Proof. We use the fact that (transient ¢) A [p = ¢] = (transient p):

rel =kANkC hAhC givAhCy ask
= {Definition of C5, calculus}

rel =k A |rel| < |h| < |giv| A (Vn:1< n <k giv[n] > ask[n])
= {Calculus}

rel =k A |rel] < |giv| A {(¥Yn: 1< n<|rel| +1: giv[n] > ask[n])
= {Choose n. = |rel| + 1}

rel =k A |rel| < |giv| A giv[|rel| + 1] > ask[|rel| + 1]

{From the first program statement}

is transient for any k

Proof (specification (26)). In any composed system:

{From lemma (27), existentiality of transient}
(rel=kANkCT hAhC giv ANhCs ask)
— —(rel=kANkTC hAhCgiv ANhCs ask)
= {giv / from lhs, ask ~, PSP}
rel =k ANkChART givAhCy ask — rel # k
= {rel /', PSP}
rel =kANkChAQhC giv ANhCy ask — k C rel

16

(27)

= {Induction on |h| — |k|}
rel=kANkC hAhRC giv ANhCy ask — rel = h
= {Weakening}
rel =kANkC hAhC giv ANh Ty ask — h T rel
= {Disjunction over k}
relChAhC givANhCs ask — h T rel
= {Disjunction [(pAr — q) = ((pVg) Ar — ¢)]}
(relC hVhC rel) N\hE giv Ah Cs ask — h T rel
= {always rel C giv holds in system, hence h C giv = (rel T hV h C rel)}
hE giv ANhCy ask — h C rel

7 The Single-Client Allocator

7.1 Model

The allocator uses a variable T to store the number of available tokens. It simply
answers an unsatisfied request if there is enough tokens in 7T'. The allocator also
looks into its release port and “consumes” messages to increase T'. It keeps track
of the number of consumed messages in NbR.

Program Alloc
Declare

ask, rel : input history;

giv : output history;

T : bag of colors;

NbR : int;
Initially

T=NbTANbR=0
Assign (weak fairness)

g, T = giv e ask[|giv| + 1], T — ask[|giv| + 1]

if |ask| > |giv| A T > ask||giv| + 1]
[T,NbR := T + rel[NbR+ 1], NbR+ 1 if |rel| > NbR

End

7.2 Provided Specification

The previous model provides a specification for the single client allocator stronger
than the required specification [10].

The main difference is that this allocator waits for a request before it sends
tokens (30). This is not explicitly required in specification [10]. Especially, we can
imagine an allocator able to guess some clients requests, using, for instance, some
knowledge that several clients have exactly the same behavior (client i asked for
n tokens, therefore client j will also ask for n tokens.). The only constraint is
that tokens given to a client correspond (possibly in the future) to a request from
that client. Then, since this allocator does not send tokens without requests, it
can expect the return of all the tokens it sent, which changes the left-hand side

17

of the liveness property (31). Intuitively, this leads to a stronger specification:
Never sending tokens without request and expecting the return of all tokens is
stronger than only expecting the return of tokens sent in response to a request.
The second (minor) difference is that this allocator always gives ezactly the
right number of tokens. The resulting specification is summarized in fig. 12.

true guarantees giv (28)
rel /* guarantees always Tokens.giv — Tokens.rel < NbT (29)
ask /' guarantees always giv C ask (30)
ask S Nrel S
A always (Vk :: ask[k] < NbT)
A Vk :: Tokens.giv > k — Tokens.rel > k (31)
guarantees

Vh::h C ask — h C giv

Fig. 12. Single-client allocator specification (provided).

The refinement proof ([12] = [10]) is given in appendix C.3. The program
text correctness proof is given in appendix D.3.

8 Conclusions

The allocator example illustrates the need, when adopting a component-based
design, to switch between top-down and bottom-up approaches: A designer has
in mind the global (at his level) system he wants to obtain. He deduces some
expected components behaviors. Among these components, some are generic and
he can expect to find them in some repository. However, he will have to design
some other components by himself. Such a design can be compositional again
(Sect. 5), or he can just program them in a traditional way (Sect. 6 and 7).
While building these components (by programming, or by further decom-
position), he adopts the provider point of view: he looks at what he gets and
expresses it logically. The provided specification and the required specification
need not be the same and, in general, they are different. This is because when
specifying a required behavior, one does not want to demand too much; and
on the other hand, when programming a model, one does not try to obtain the
weakest possible solution. If the user and the provider are forced to share some
average common specification, they remain unsatisfied: “Why should I ask for
things I don’t need?”, “Why should I hide some properties my program has?”.
Because we hope for reusability, a component should be finally published with its
provided specification, as well as with different weaker specifications (Fig. 13).
One advantage in publishing these weak specifications is that they may allow

18

a reuse of the component while avoiding either another refinement proof or a
complex compositional proof (using directly the provided specification). These
weaker specifications can be obtained from previous uses of that component.
Another possibility is that the component implementor invests effort in prov-
ing several specifications of his component, and hence reduces the work of the
composer who can use the most convenient specification.

Provided
Specification

Required Required
Specification Specification
1 2

Fig. 13. Multiple use of a component.

Required Required
Specification Specification

n

As we see on the example, this approach requires three kinds of proofs: com-
positional proofs, to deduce the correctness of a system (or sub-system) from
components correctness; refinement proofs to check that bottom-up phases pro-
vides components stronger than requested during top-down phases; program text
correctness proofs to relate, at the bottom, program texts to logical specifica-
tions. The framework we are using, based on UNITY, extended with composition
operators (guarantees) and some communication abstraction (follows), is able
to handle those three types of proofs, while remaining in the minimalism spirit
of UNITY.

Our goal being to build distributed systems from components, it is very
important to have the possibility to specify components in terms of input and
outputs, and to be able to connect them formally through simple proofs. Mixing
a temporal operator like follows with some basic sequences properties seems
an interesting approach. We are currently investigating how far this approach
can go. Especially, we would like to express both traditional functional behaviors
and useful nondeterministic behaviors (like merge) with a common notation that
would be able to handle their interaction nicely.

Another area of interest is universal properties. Throughout the allocator ex-
ample, all composition aspects are handled with existential properties. Although
it it easier to use existential properties than universal properties, it seems that
they can become insufficient when dealing with global complex safety properties.
We are currently investigating examples involving such global complex safety
properties to learn more about universally-based composition [5].

19

The motivation for this research is the development of large repositories of
software components. Designers can discover implementations of components
and use relatively simple compositional structures to create useful software sys-
tems. Widespread deployment of such repositories may be years away. Never-
theless, we believe that research to support such repositories is interesting both
because it offers intellectually stimulating problems and because it is useful.

We have been working on composition in which shared variables are modified
only by one component and read by others. Further, proofs are simplified if these
shared variables have a monotonic structure. Existential and universal property
types make proof obligations very clear, and these property types yield nice
proof rules that appear, at least at this early stage in our investigation, to be
well suited for mechanical theorem provers. We have started a collaboration with
Larry Paulson who has successfully used Isabelle [7] to prove the correctness of
such systems.

Much work remains to be done to achieve our goal of large repositories of
software components with their proofs of correctness. This is a step in that
direction.

References

1. K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

2. K. Mani Chandy and Beverly A. Sanders. Predicate transformers for reasoning
about concurrent computation. Science of Computer Programming, 24:129-148,
1995.

3. K. Mani Chandy and Beverly A. Sanders. Reasoning about program composition.
Technical Report 96-035, University of Florida, Department of Computer and In-
formation Science and Engineering, 1996.

4. Michel Charpentier. Assistance & la Répartition de Systémes Réactifs. PhD thesis,
Institut National Polytechnique de Toulouse, France, November 1997.

5. Michel Charpentier and K. Mani Chandy. Examples of program composition illus-
trating the use of universal properties. In International workshop on Formal Methods
for Parallel Programming: Theory and Applications (FMPPTA’99), Lecture Notes
in Computer Science, Puerto Rico, April 1999. Springer-Verlag.

6. Jayadev Misra. A Logic for Concurrent Programming. Technical Report (“New
UNITY”), Department of Computer Science, University of Texas at Austin, 1994.

7. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

8. Beverly A. Sanders. Eliminating the substitution axiom from UNiTY logic. Formal
Aspects of Computing, 3(2):189-205, April-June 1991.

9. Paolo A. G. Sivilotti. A Method for the Specification, Composition, and Testing of
Distributed Object Systems. PhD thesis, California Institute of Technology, 256-80
Caltech, Pasadena, California 91125, December 1997.

20

A Basic Properties Proofs

A.1 Merge
Property (21).

(VWi :: In; /") guarantees B(Out) B UB(Ini) (21)

Proof.
B(Out)
= {From specification (11), |Out| = |iOut|}
B(Out/{k | 1 < k < |iOut|})
= {From specification (12), for any k:
(Fi:0< i< N :iOut[k] = i) = true}
B(Out/{k |1 <k < |iOut|A(Fi:0<i< N :iOut[k] =i)})
= {Calculus}
B(Out/ Uiy {k | 1 < k < |iOut| A iOut[k] = i})
= {Sets are disjoint, lemma (42)}
UNS' B(Out/{k | 1 < k < |iOut| A iOut[k] = i})
© {From specification (13), follows theorems}

N—
O
A.2 Distributor
Property (22).
In & Niln /& A always (Vk :: 0 < iln[k] < N)
guarantees (22)
Vi :: Out; N
Proof. From specification (14), any follows’ right-hand side being monotonic.
0O

Property (23).

In & Niln /A always (Vk :: 0 < iln[k] < N)
guarantees (23)
U, B(Out:) & B(In/{k | 1 < k < |ifn]})
Proof.
UYS! B(Out;)
B {From specification (14) and follows theorems}
Uy BUn/{k | 1< k < |iln| A ifnlk] = i})
= {Sets are disjoint, lemma (42)}
B(In/ U3 {k | 1 <k < |iln| AiIn[k] = i})
= {Calculus}
B(In/{k |1 < k< |iln|A{(Fi:0<i<N:iln[k]=14)})
= {From lhs, (i : 0 < i < N :iln[k] = i) = true}
B(In/{k | 1< k< |iln|})
21 o

B Compositional Proofs

B.1 C1

See sect. 4.2.

B.2 C2

Lemmas and Corollaries. The following lemmas and corollaries are used in
the proof. For any binary relation R, any sequences @, ‘Q, @', ‘Q’, Q", Q"', any
sets S, S’, and any predicate P:

Lemma 32.

[QCQCrQ"EQ" = QCr Q"] (32)

Lemma 33. IfR is an order relation (reflexive, transitive, antisymmetric), then
Cr is an order relation.

Lemma 34. If R is an order relation, then:

‘QRBQurtC= ‘QBQ wrt Cr (34)
Lemma 35.
[RCRQ'ASKS = Q/SCrQ'/S] (35)
Corollary 36.
Q /‘; /\S/‘g = Q/S /‘; (36)

Lemma 37.
REQ = {k1<k<|QAPQIK]} <{k|1<k<|QIANPQTK]}] (37)
Corollary 38.
Q/c= {k|1<Ek<|QAPQK} S < (38)
Corollary 39.
Qe ANQ Je= QHk|1<k<|QAPQK} /' (39)
Lemma 40.
Q/c AS /< AQBQ A SES = ‘Q/'SEQ/S (40)
Corollary 41.
Q/cAQ /c ANQEQ AN QEBQ

= (41)
QUE 1<k [QINPQTIRQ/HE 1<k <|QAPQ[K]}

22

Lemma 42.
[SNS' =0 = B(Q/SUS")=B(Q/S)UB(Q/S")] (42)

The following lemma, relates the bags of histories to the number of tokens in
these histories:

Lemma 43 (bags and tokens relationship). For any queues @, Q' and Q":

[B(Q) = B(Q'") = Tokens.QQ = Tokens.Q']

[B(Q) = B(Q") UB(Q") = Tokens.Q = Tokens.Q' + Tokens.Q"] (43)

In the remainder of the proof, variable names are not prefixed with compo-
nent name. We use instead the names of fig. 8. Properties are stated for the
global system.

Proof of (15).
Proof.

{Inner allocator specification (6), merge specifications (10) and (12)}
gw S NiA S A always (Vk : 0 < iA[k] < N)
= {Follows definition, weakening & into C}
G/ NiG /A always (Vk 1 0 <iG[k] < N)
= {Distributor specification (22)}
Vi giv; N

Proof of (16).

Proof. From merge specifications and follows definition, rel ,* and specification
(7) is applicable. Then:

>; Tokens.giv; — >, Tokens.rel;

< {From distributor property (23), using lemma (43)}
Tokens.G —), Tokens.rel;

< {Weakening G B giv into subbag relation, using lemma (43)}
Tokens.giv —), Tokens.rel;

< {Same work on rel, using merge property (21)}
Tokens.giv — Tokens.rel

< {From inner allocator specification (7)}

NbT
0O
Proof of (17).
Lemma 44. The inner allocator is live (it eventually answers any request).
Vh:hC ask — h Cg giv (44)

23

Proof. We show that the lhs of (8) is satisfied:

1.

2.

ask S A rel S

from merge specification and follows definition.
always (Vn :: ask[n] < NbT)

{From lhs of (17)}
always (Vi,n :: ask;[n] < NbT)

= {Definition of B(ask;)}
always (Vi,z : ¢ € B(ask;) : ¢ < NbT)

= {B(A) B |, B(ask;) from (21), calculus}
always (Vz:z € B(A): z < NbT)

= {Weakening ask & A into subbag relation}
always (Vz : z € B(ask) : x < NbT)

= {Definition of B(ask)}
always (Vn :: ask[n] < NbT)

Vh:: h E giv AhCy ask — Tokens.rel > Tokens.h

hC givANhCy ask
= {Choice of a}
hEgiwANhCy askNiA=a
— {From iG B iA and monotonicity of histories}
hC givANRCy askAaCiANaCiG
= {Notation: h; = h/{k | 1 < k < |h| A a[k] = i}, lemma (35)}
(Vi h; Cgiv/{k|1<k<|hAalk] =1}
A hi Cy ask/{k |1 < k< |h|Aalk] =i})
A aCiAANaLCiG
= {From merge specification (11), |h| < |a|, then lemma (35)}
(Vi h; Cgiv/{k|1<k<]|a|Aalk] =i}
A hiCs ask/{k | 1< k< |a| Aalk] =i})
A aCiANaCiG
= {Using a C iA4 and a C G, lemmas (37) and (35)}
(Vi h; Cgiv/{k|1<k<I|iGANiG[k] =1}
A hiCs ask/{k | 1< k< [iA| NiA[k] = i})
= {Merge specification (13), follows liveness}
(Vi :: h; C giv,
A hi Cs ask/{k | 1< k< [iA| NiA[k] =i})
= {Merge specification (13), weakening ® into C}
(Vi 1t h; E giv; A by C> aski)
— {From lhs of (17)}
>; Tokens.rel; > 3", Tokens.h;
— {From merge property (21) and lemma (43)}
Tokens.rel >), Tokens.h;
= {Using), Tokens.h; = Tokens.h}
Tokens.rel > Tokens.h

24

Lemma 45.
S /<= (¥h,S = hC ask/S — h C< giv/S) (45)
Proof.

{Lemma (44)}
VEk: kCask — kCg giv
= {Choosing k = ask, strengthening lhs, k/S * from corollary (36)}
Vh:hCask/SANask =k~ hCk/SANkCg giv
= {Lemma (35)}
Vh:hCask/SANask=k— hCk/SAk/SCggiv/S
= {Lemma (32)}
Vh:hCask/SNAask =k~ hCg giv/S
= {Disjunction}
Vh:hCask/S — hCg giv/S

O
Proof (specification (17)).
h C ask;
— {ask; /1, merge specification (13), follows liveness}
hC A/{k | 1< k<A NiA[k] =i}
— {askB A, iGBiA, corollary (41), follows liveness}
hCask/{k|1<k<|iG| NiG[k] =i}
— {Lemma (45)}
hCg giv/{k | 1< k < |iG| AiG[E] = i}
— {From distributor specification (14), lemma (34), follows liveness}
h E< giv;
O

C Refinement Proofs

C.1 R1

See sect. 5.3.

C.2 R2

We need to show that the provided specification [11] is stronger that the required
specification [3]. The only proof obligation is that (26) = (5), which is trivial
since

[h C rel = Tokens.rel > Tokens.h]

25

C.3 R3

We need to show that the provided specification [12] is stronger that the required
specification [10]. The only proof obligation is that [12] = (20).

Lemma 46.

[12] A lhs of (20) = (Vk :: Tokens.giv > k — Tokens.rel 2 k) (46)

Proof.

Tokens.giv > k
= {Choice of h}
Tokens.giv > kN giv =h
= {ask /" from lhs of (20), use specification (30)}
Tokens.giv > k A giv =h A h C ask
— {From lhs of (20)}
Tokens.rel > Tokens.h
= {From Tokens.h > k}
Tokens.rel > k

0O
Proof (specification (20)). Assuming [12]:
Ihs of (20)
= {Lemma (46)}
lhs of (20) A (Vk :: Tokens.giv > k — Tokens.rel > k)
= {Calculus}
lhs of (31)
guarantees {Using (31) from [12]}
Vh:: h C ask — h C giv
= {Weakening C into Cs}
rhs of (20)
O

D Text Correctness Proofs

D.1 Lemma for Proving Guarantees

The following lemma is useful when proving some guarantees properties from a
component program text. It allows us to derive a (weak) system property (right-
hand side of a guarantees) from a strong local property (from the program text),
a weak system property (left-hand side of the guarantees) and a strong system
property (from locality hypotheses).

Lemma 47. Given programs F and G, and predicate P, the following rule holds:
stable; Pz.y - F
VEk :: stabley, Pk.y- F|G

Vk :: stablegs z = k-G
stabley, Px.y - F|G

(47)

26

Proof.

(stableg Px.y - F) A
(Vk :: stabley P.k.y - F|G) A
(Vk :: stables z = k - G)

= {Translating stable into next}
(P.z.y nextg Px.y - F) A
(Vk :: Pk.y nexty, Pky- F|G) A
(Vk::x =k nextsz =k - Q)

= {lhs strengthening, rhs weakening of next}
(Vk:z=kAPzynextsz=kVPzy-F)A
(Vk :: Pk.y next,, Pky- F|G) A
(Vk::z=kAPzxynextsz=kVPzy-QG)

= {Universality of nexts}
(Vk:z =kAPzxynextsz=kV Px.y-F|G) A
(Vk :: P.k.y nexty Pk.y- F|G)

= {Conjunctivity of next}
Vk:z=kAPzxzyAPkynexty, (x=kV Pzy)APky-F|G

= {Predicate calculus: lhs = (x = k A P.x.y), rhs = P.x.y}
Vk::xz =k A Px.y nexty Px.y - F|G

= {Disjunctivity of next}
(3k :: x = k A P.x.y) nexty Px.y- F|G

= {Predicate calculus}
P.x.y next,, P.x.y- F|G

= {Translating next into stable}
stabley Px.y - F|G

D.2 Ti1
See sect. 6.3.

D.3 T2
Property (28). Inductive and local.

Property (29).
Proof.

{From program text}

stable; T > 0 -Alloc
stable; NbR < |rel| -Alloc

stable; T = NbT — Tokens.giv + E?g’lR rel[i]- Alloc
= {Let z = (T, NbR, giv) and y = rel and NbR
Pzy=(T 20)A(NbR L |rel]) A(T = NbT — Tokens.giv + Z rel[i])}

i=1

27

stableg P.x.y - Alloc
= {From locality and lhs of (29)}
stableg P.x.y - Alloc
A (Vk :: stabley, P.k.y - Allocfenv) A (Vk :: stableg z = k - env)
= {Lemma (47)}
stabley, P.z.y - Alloc]env
= {Histories are empty in initial state, assume NbT > 0}
always P.x.y - Alloc]env
= {Expanding predicate P}
always
(T > 0) A (NBR < |rel|) A (T = NbT — Tokens.giv + Y 'y rel[i])
-Alloc] env
= {From [NbR < |rel| = EﬁblR rel[i] < Tokens.rel]}
always Tokens.giv — Tokens.rel < NbT - Alloc]env

Property (30).
Proof. Let x = giv, y = ask and Px.y =z C y.

{From program text}
stables P.x.y - Alloc
= {From locality and lhs of (30)}
stableg P.x.y - Alloc
A (Vk :: stabley, Pk.y - Alloc|env) A (Vk :: stables = k- env)
= {Lemma (47)}
stabley P.x.y - Alloc]env
= {Histories are empty in initial state}
always P.z.y - Alloc]env
= {Expanding predicate P}
always giv C ask - Alloc]env

Property (31). All the following properties are stated for Alloc]env, including
transient properties that come from the corresponding transient property in

Alloc alone.

Lemma 49.
Vk::|rell| 2k — NbR >k

28

(49)

Proof.

{From program text}
Vk :: transient |rel| > kANbBR=k—1

= {Using stable |rel| > k (from lhs of guarantees), PSP}
Vk:|rell >kANDR=k—-1— NbR#k—1

= {Using stable NbR > k (from program text), PSP}
Vk::|rell 2k ANbDR=k—1~ NbR >k

= {Induction over n, using the previous property}
Vn,k:: |rell > kANbR=n+— NbR > k

= {Disjunction over n}
Vk::|rel| > k— NbR >k

O
Lemma 50.
Vk 2 T > ask[|giv| + 1] A |ask| > |giv] = k — |giv] > k (50)
Proof. Similar as for (49). O
Lemma 51.
NbR
always Z rel[i] > Tokens.giv = T > NbT (51)
=1

Proof. From ask " and rel / in the left-hand side of the guarantees, we can
use the right-hand side of (48) (proved under the hypothesis rel), from which
the required property follows trivially. O

Proof (property (31)).

{From lhs of guarantees, giv /*, PSP, predicate calculus}
|giv| = n A Tokens.giv =k — (|giv]| = n A Tokens.giv = k A Tokens.rel > k) V |giv| > n
= {Lemma (49)}
|giv| = n A Tokens.giv =k — (|giv| = n A Tokens.giv = k A Zﬁi”f rel[i] 2 k) V |giv] > n
= {Lemma (51)}
|giv| = n A Tokens.giv =k — (|giv]| =n A T = NbT) V |giv]| > n
= {Disjunction over k}
lgiv|=n — (Jgiv| =n AT > NbT) V |giv]| > n
= {lhs strengthening, ask , PSP}
lask| =k A lgivl]=n <k~ (T > NbT A |ask| > |giv]| =n) V |giv]| > n
= {ask[|giv| + 1] < NbT, from lhs of guarantees}
lask| = k A |giv| =n < k — (T > ask[|giv| + 1] A |ask| > |giv] = n) V |giv] > n
= {From lemma (50)}
lask| =k A |giv| =n < k — |giv| >n
= {Induction over n}
lask| =k — |giv| 2 k
= {Disjunction}
lask| > k — |giv| > k
= {Using (30)}
Vh: h C ask — hC giv

29

